
PyTorch: PyTorch: PyTorch: PyTorch: UUUUse se se se create_graph    totototo    CCCCompute ompute ompute ompute SSSSecondecondecondecond----order order order order DDDDerivativeerivativeerivativeerivative    

Written by Tongyu Lu 

This article assumes that readers have been familiar with the concept of computation graph. 

Suppose we want to back-propagate through such a computation graph: 

 
We shall do this in PyTorch: 

 
The corresponding backward graph can be shown as follows: 

 

Now, how can we compute ���/ ���
� using computation graph without doing calculus? 

First, we construct the computation graph for ��/ ��  (just based on the back-propagation computation graph) 

 
Then, we construct the computational graph for ��/ ���  

 
Now, treat this computational graph shown above as a feed-forward network from right to left. 



Then, how to do back-propagation for this “1-order derivative computation graph”? That is in the same fashion 
as the back-propagation in general case: 

 
If you check this result with analytical solutions acquired by calculus, you will find that they are same. 
Now, we flow data through this computation graph and we get the final 2-order derivatives. 
Therefore, if we want to compute a term which contains gradients (e.g. regularization for gradients), we shall plug in 
the “1-order derivative computation graph”, and finally we can treat that term as a feed-forward computation 
graph. 
But how to realize this idea in PyTorch? We shall do this: 

 
We shall see that: once we do .backward(create_graoh=True), x.grad,y.grad, will have additional 
attribute grad_fn=<CloneBackward> which indicate that the gradients are differentiable. 
This means that, we can treat the grads just as the middle variables such as z. 
What will happen if we throw away .grad.data.zero_()? 

 
We shall see that the result is the addition between the 1-order derivative and the 2-oder derivative. This is because 
we did not release the 1-order gradient before calculating the 2-oder derivative. The default consideration of PyTorch 
is to add up the two gradients obtained by the two backward() operations. 



An An An An AAAApplication pplication pplication pplication UUUUsingsingsingsing    create_graph::::    MAMLMAMLMAMLMAML    

This article assumes that readers have known something about meta learning and MAML. 

Refer to the slide created by Hungyi Lee (meta learning and MAML): 
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/Meta1%20(v6).pdf 
And the source code of homework 13 (for MAML toy example): 
https://colab.research.google.com/drive/1MFJwRdOTefd6UOYRsNjdc7BWuB7Qe3lY 
All homework are available at: 
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html 

 
Recall what MAML wants to do is to compute a single update step on each training task to update the model 
parameter in each training task. 
Formally, our model is defined as  �	 = ��|�� where � is the model parameter. for each task �, the initial model 
parameter � is updated into ��

∗ = � − �∇�������
�����|��, ��

������, and meta loss ! = ∑ ������
�#$�|��

∗�, ��
�#$���  

From the formulation we can see that our meta loss ! is a function of ��
∗, and ��

∗ is a function of � and ∇� . 
Therefore, if we want to update � minimizing !, we must be able to obtain the computation graph for ∇�. 
Now, you may realize that if you want to implement MAML using PyTorch, you may consider create_graph 
operation! 
 
Here is how this operation is used in meta-training: 
 

epoch = 1 

for e in range(epoch): 

    meta_model.model.train() 

    for x, y in tqdm(train_loader): 

        x = x.to(device) 

        y = y.to(device) 

        sub_models = meta_model.gen_models(bsz) 

 

        meta_l = 0 

        for model_num in range(len(sub_models)): 

             

            sample = list(range(10)) 

            np.random.shuffle(sample) 

             

            #pretraining for only 1 step 

            pretrain_optim.zero_grad() 

            y_tilde = pretrain(x[model_num][sample[:5],:]) 

            little_l = F.mse_loss(y_tilde, y[model_num][sample[:5],:]) 

            little_l.backward() 

            pretrain_optim.step() 

             

            # meta learning 

             

            y_tilde = sub_models[model_num](x[model_num][sample[:5],:]) 

            little_l = F.mse_loss(y_tilde, y[model_num][sample[:5],:]) 

            #compute gradient ∇�, obtain its computation graph for high-order gradient 

            little_l.backward(create_graph = True) 



            sub_models[model_num].update(lr = 1e-2, parent = meta_model.model) 

            #clear gradient in optimizer (avoid from gradient cumulation) 

            meta_optimizer.zero_grad() 

             

            #compute 2nd-order gradient 

            #in detail: the update() method in sub_model is defined as such: 

            #layers[par].weight = layers[par].weight-lr*parent_layers[par].weight.grad 

            #parent_layers[par].weight.grad has computation graph because of  

            #create_graph=True 

            #therefore, when again using sub_models for forwarding, we actually 

applying computation graph of grad. Therefore, the meta-update will consider the 

computation graph of grad. 

            y_tilde = sub_models[model_num](x[model_num][sample[5:],:]) 

            meta_l = meta_l + F.mse_loss(y_tilde, y[model_num][sample[5:],:]) 

 

        meta_l = meta_l / bsz 

        meta_l.backward() 

        meta_optimizer.step() 

        meta_optimizer.zero_grad() 

 
Hope this example could help you! 
And of course, MAML does not necessarily use 2nd derivative, just for simplification. You may think about how to do 
that with PyTorch! 
 


