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Chapter 1: approximating functions using sigmoid basis 

Introduction: neuron as basis 

Consider a single-layer neural network 𝐺(𝑥) (which has a 𝑑-dimensional vector input 𝑥 ∈ ℝௗ ) with sigmoid-like 
activation function 𝜎: ℝ → [0,1]: 

𝐺(𝑥) = ෍ 𝑎௝𝜎൫𝑦௝
்𝑥 + 𝜃௝൯

ே

௝ୀଵ

 

where 𝑦௝ ∈ ℝௗ , 𝜃௝ ∈ ℝ 
It is OK to treat each term 𝜎൫𝑦௝

்𝑥 + 𝜃௝൯ as a basis defined by ൫𝑦௝ , 𝜃௝൯, which could be written as 

𝐾௬ೕ,ఏೕ
(𝑥) = 𝜎൫𝑦௝

்𝑥 + 𝜃௝൯ 

Then, we find ourself actually treating a single-layer neural network as a linear combination of basis: 

𝐺(𝑥) = ෍ 𝑎௬,ఏ𝐾௬,ఏ(𝑥)

௬,ఏ

 

This is somehow like the Fourier transform: 

𝑥(𝑡) = න𝑥ො௙𝑒ଶగ√ିଵ௙௧𝑑𝑓
௙

 

where each basis 𝜙௙(𝑡) = 𝑒ଶగ√ିଵ௙௧ , and there is uncountable-many of them. We know that ൛𝜙௙(𝑡): 𝑓 ∈ ℝൟ is a 

complete set of bases for functions (vectors) which are subject to Dirichlet conditions. 
In the neural network context, we also have uncountable-many bases 𝐾௬,ఏ(𝑥) = 𝜎(𝑦்𝑥 + 𝜃), but the magic is that: we 

only select finite-many of those bases and we can the approximate a given function in ℝௗ. (That is why we use 𝑗 to 
denote 𝑦 and 𝜃). 
We want to see whether ൛𝐾௬,ఏ(𝑥): 𝑦 ∈ ℝௗ , 𝜃 ∈ ℝൟ is a complete set of bases for continuous functions (vectors) whose 
domain is ℝௗ. And further, we wish to show that we could only select finite-many of those bases in order to approximate 
a given continuous function. 
Our following analysis is first restricted within such a Hilbert space (𝑋, ‖·‖ஶ), where 𝑋 = {𝑓: 𝐼ௗ → ℝ, 𝑓 ∈ 𝐶(𝐼ௗ)}, 𝐼ௗ =

[0,1]ௗ. The norm is defined as ‖𝑓‖ஶ = sup
௫∈ூ೏

|𝑓(𝑥)|. (In the following contexts, we use ‖·‖ instead of ‖·‖ஶ) The inner 

product between 𝑓 and 𝑔 is defined as 〈𝑓, 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
ூ೏

. 

Question: why restricting 𝑥 within 𝐼ௗ? Why not use ℝௗ? 
Question: the normed space has infinity norm, which defines the inner product as 〈𝑥, 𝑦〉 = (‖𝑥 + 𝑦‖ଶ − ‖𝑥 − 𝑦‖ଶ)/4 . 
But the inner product is defined as an integral. Why shall we define integral as the inner-product? 



Is a single-layer neural network capable to represent arbitrary function? 

The answer for this question is as follows: 
Theorem (single-layer approximation): let 𝜎: ℝ → ℝ be a continuous discriminatory (?) function, and let space 𝑈(𝜎) =

span൛𝐾௬,ఏ(𝑥): 𝑦 ∈ ℝௗ , 𝜃 ∈ ℝൟ. Then, 𝑈(𝜎) is dense (?) in 𝐶(𝐼ௗ). 
 
This statement may look intimidating at first glance. This might because there are two unfamiliar (maybe not) concepts: 
discriminatory property and density property. 
The density property is easier to explain: subset 𝑀 is dense in 𝑋, if  𝑀ഥ = 𝑋. 
Recall that the concept of closure:  𝑀ഥ = {𝑥: 𝐵ఢ(𝑥) ∩ 𝑀 ≠ ∅, ∀𝜖 > 0} (𝐵ఢ(𝑥) means a ball of radius 𝜖 centered by 𝑥). 
In other words, if 𝑀 is dense in 𝑋, then each point in 𝑋 is neighbored by points from 𝑀. 
Formally, the statement “𝑀 is dense in 𝑋” means that “∀𝑥 ∈ 𝑋, ∀𝜖 > 0, ∃𝑦 ∈ 𝑀 𝑠. 𝑡. ‖𝑥 − 𝑦‖ < 𝜖”. 
Therefore, the statement “𝑈(𝜎) is dense in 𝐶(𝐼ௗ)” means that “∀𝑓 ∈ 𝐶(𝐼ௗ), ∀𝜖 > 0, ∃𝐺 ∈ 𝑈(𝜎) 𝑠. 𝑡. ‖𝐺 − 𝑓‖ < 𝜖”. 
This is the explanation for why this theorem is about approximation. 
 
Next, what is the discriminatory property? It is to be introduced in the next section. And after having an idea of the 
following concepts, we are ready to prove the theorem. 

Preparation knowledge: functional-analysis-related concepts 

(It is recommended that readers have known a few concepts about linear functional. But anyway, let us go on.) 
- Discriminatory property and completeness 

Definition (discriminatory property): 𝜎 is discriminatory if statement “given ∀𝑔 ∈ 𝐶(𝐼ௗ), then 〈𝑔, 𝐾௬,ఏ〉 = 0, ∀𝑦 ∈

ℝௗ , 𝜃 ∈ ℝ” implies 𝑔 = 0. 
 
This means that: the bases defined using 𝜎("affine") consist of a complete set of bases in 𝐶(𝐼ௗ). 𝑈(𝜎) =

൛𝐾௬,ఏ: 𝑦 ∈ ℝௗ , 𝜃 ∈ ℝൟ is complete because there is no other vector orthogonal to 𝑈(𝜎) except zero vector 𝑔 = 0. 
In the measure theory language, the definition is stated as such: 

Definition (discriminatory property): 𝜎 is discriminatory if statement “given ∀𝜇 ∈ 𝑀(𝐼ௗ), then ∫ 𝐾௬,ఏ(𝑥)𝑑𝜇(𝑥)
ூ೏

=

0, ∀𝑦 ∈ ℝௗ, 𝜃 ∈ ℝ” implies 𝜇 = 0. 
Actually, we could get the equivalent bridge by setting 𝑑𝜇(𝑥) = 𝑔(𝑥)𝑑𝑥 
 

- Hahn-Banach Theorem 
This theorem says that: 
Let (𝑀, ‖·‖) be a subspace of Banach space (𝑋, ‖·‖). Let 𝑙 be a bounded linear functional (b. l. f.) on (𝑀, ‖·‖) (and 
it shall be bounded by a sublinear functional actually). Then, ∃ b. l. f. 𝐿: 𝑋 → ℝ on (𝑋, ‖·‖) that is an extension of 𝑙 
and satisfies ‖𝐿‖ = ‖𝑙‖. 
Please refer to any functional analysis book for the proof of this theorem. Here in our discussion, this theorem is 
applied to proving the following theorem: 
Theorem (a condition of density): Let (𝑀, ‖·‖)  be a subspace of Banach space (𝑋, ‖·‖) . Then, statement 
“∀b. l. f. 𝐹: 𝑋 → ℝ , such that if 𝐹(𝑥) = 0, 𝑥 ∈ 𝑀 , then 𝐹(𝑥) = 0, 𝑥 ∈ 𝑋” implies that “𝑀  is dense in 𝑋 ”, or 
that  𝑀ഥ = 𝑋. 
Proof: to prove this, we suppose that  𝑀ഥ ⊂ 𝑋. Then, ∃𝑥଴ ∈ 𝑋\𝑀ഥ . Then, ∃ b. l. f. 𝐹: 𝑋 → ℝ such that 𝐹(𝑀) = {0} 
but 𝐹(𝑥଴) ≠ 0. (This is a corollary of H.B. theorem, which shall be proved.) However, this contradicts with the 
assumption that 𝐹(𝑥଴) should be zero. 
 



- Riesz Representation Theorem 
This theorem says that: given Hilbert space 𝑋, ∀ b. l. f. 𝐹: 𝑋 → ℝ, ∃unique 𝑔 ∈ 𝑋 such that 𝐹(𝑥) = 〈𝑥, 𝑔〉, ∀𝑥 ∈ 𝑋. 
In our context, it gives us that ∀ b. l. f. 𝐹: 𝐶(𝐼ௗ) → ℝ, ∃unique 𝑔 ∈ 𝐶(𝐼ௗ) such that 𝐹(𝑓) = 〈𝑓, 𝑔〉, ∀𝑓 ∈ 𝐶(𝐼ௗ). 

In language of measure theory: ∀ b. l. f. 𝐹: 𝐶(𝐼ௗ) → ℝ, ∃unique 𝜇 ∈ 𝑀(𝐼ௗ) such that 𝐹(𝑓) = ∫ 𝑓𝑑𝜇
ூ೏

, ∀𝑓 ∈ 𝐶(𝐼ௗ). 

Please refer to any functional analysis book for the proof of this theorem. 

Proof for the single-layer approximation theorem 

Restate the single-layer approximation theorem: let 𝜎: ℝ → ℝ be a continuous discriminatory function, and let space 
𝑈(𝜎) = span൛𝐾௬,ఏ(𝑥): 𝑦 ∈ ℝௗ, 𝜃 ∈ ℝൟ. Then, 𝑈(𝜎) is dense in 𝐶(𝐼ௗ). 
 
Hopefully, we have already understood this statement. Now comes the proof: 
By definition, 𝑈(𝜎) is a linear subspace of 𝐶(𝐼ௗ). This is because each 𝐾௬,ఏ(𝑥) is linearly independent and is member of 
𝐶(𝐼ௗ). 
Let 𝐿: 𝐶(𝐼ௗ) → ℝ be a b. l. f. and 𝐿൫𝑈(𝜎)൯ = {0}. Then, by Riesz representation, ∃unique 𝑔 ∈ 𝐶(𝐼ௗ) such that 𝐿(𝑓) =

〈𝑓, 𝑔〉, ∀𝑓 ∈ 𝐶(𝐼ௗ) . Since 𝐿൫𝑈(𝜎)൯ = {0} , we have 𝐿൫𝐾௬,ఏ൯ = 〈𝐾௬,ఏ , 𝑔〉 = 0, ∀𝑦 ∈ ℝௗ , 𝜃 ∈ ℝ . According to the 
assumption that 𝜎: ℝ → ℝ is discriminatory, we have that 𝑔 = 0, which implies that 𝐿൫𝐶(𝐼ௗ)൯ = {0}. 
In other words, we reached the statement that “𝐿൫𝑈(𝜎)൯ = {0} implies 𝐿൫𝐶(𝐼ௗ)൯ = {0}”. Therefore, according to the 
discussion in the previous section, 𝑈(𝜎) is dense in 𝐶(𝐼ௗ), which finishes the proof. 
 
Now, we may wonder: what kind of function 𝜎 have the discriminatory property? 
And why are we able to pick only finite-many bases (neurons) to approximate the target function? 
 
 
 
 
 
 
 
 


