Reflections on Linear Algebra: Range and Nullspace

This article assumes readers have already learned basic linear algebra for at least one time.

By Tongyu Lu, written on 13/01/2021

Range and Nullspace

Here we do a brief introduction about the image space (range) and null space (kernel space) of a matrix (or a linear transform) $A_{M\times N}$. The range (or the image space) of A is defined as $R(A) = im(A) = \{Ax: x \in \mathbb{R}^N\}$, null space (or kernel space) of A is defined as $N(A) = ker(A) = \{x: Ax = 0, x \in \mathbb{R}^N\}$.

R(A) is subspace of \mathbb{R}^{M} and N(A) is subspaces of \mathbb{R}^{N} . This can be shown by: $Ax_{1} + Ax_{2} = A(x_{1} + x_{2})$.

Now, let us consider the exact meaning of R(A) and N(A). Take A as a linear transformation $A: \mathbb{R}^N \to \mathbb{R}^M$.

- First, consider the meaning of null (kernel) space. Reflect for a while about the naming of kernel space. It means that: any vector in ker(A) is compressed into the same zero vector when applying A, which is like a kernel.
- If A is injective (which means that "if $Ax_1 = Ax_2$, then $x_1 = x_2$ "), then it is safe to say that the null space is $\{0\}$. Why? If $\dim(N(A)) \neq 0$, then there exist non-zero vectors $v_1, v_2 \in N(A), v_1 \neq v_2$, and then we have (by definition) $Av_1 = 0, Av_2 = 0$, therefore $Av_1 = Av_2$. By the injective assumption, $v_1 = v_2$, which leads to contradiction.

In the linear equality context, when $N(A) = \{0\}$, then Ax = 0 only has zero solution. Therefore, N(A) is also the solution space of Ax = 0.

- Then, consider the meaning of the range (or the image space).

The range of A is straightforward to understand: it consists of the images of linear transformation A.

If A is surjection (which means that " $\forall b \in \mathbb{R}^M, \exists x \in \mathbb{R}^N$ s.t. Ax = b"), then dim(R(A)) = M. How to understand this? It is better to write $A = [a_1, ..., a_N], a_i \in \mathbb{R}^M$. Ax is actually $a_1x_1 + \cdots + a_Nx_N$, which is linear combination of column vectors of A. Therefore, rank $(a_1, ..., a_N) = \dim(\text{span}(a_1, ..., a_N)) = \dim(R(A))$. Then according to the surjection assumption, $a_1x_1 + \cdots + a_Nx_N$ could fill up the whole \mathbb{R}^M , which means that the N basis vectors $a_1, ..., a_N$ has rank M.

Now, we move onto a very meaningful theorem: $\dim(R(A)) + \dim(N(A)) = N$ Why?

Before justifying this, we detour a little…

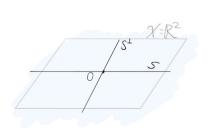
Orthogonal Complement of a Subspace

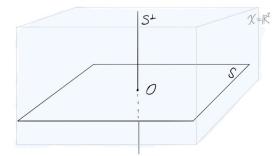
This part assumes readers have known the concepts of inner product and vector orthogonal.

Assume that S is a subspace of an inner-product space \mathcal{X} . A vector x is said to be orthogonal to a subspace S iff $\forall s \in S, \langle x, s \rangle = 0$. This relationship is denoted as $x \perp S$.

The orthogonal complement of S is defined as $S^{\perp} = \{x: x \perp S, x \in \mathcal{X}\}.$

This leads to an important theorem: any inner-product space \mathcal{X} could be decomposed into a subspace $S \subseteq \mathcal{X}$ and its orthogonal complement S^{\perp} , written as $\mathcal{X} = S \oplus S^{\perp} = \{s + s^{\perp} : \forall s \in S, s^{\perp} \in S^{\perp}\}$





Proof is left out, but here shows several figures to illustrate this idea. The proof follows this logic line: suppose that $S \oplus S^{\perp} \neq \mathcal{X}$, then there exists a vector $z \in \mathcal{X}$ and $z \perp S$ but $z \notin S \oplus S^{\perp}$, then $z \in S^{\perp}$, which says $z \in S \oplus S^{\perp}$. Here is a property: $S \cap S^{\perp} = \{0\}$. This is because if $v \in S \cap S^{\perp}$, then $\langle v, v \rangle = 0$

Orthogonal Complement of Range/Nullspace

Equipped with the concept of orthogonal complement, we are now able to discover the relationship between range and nullspace of A.

We could observe that $\forall x \in R(A^T), \forall z \in N(A)$, there must be $\langle x, z \rangle = 0$. This could be proved by:

$$x^T z = (A^T y)^T z = y^T (Az) = 0$$

Therefore, we have $N(A) \perp R(A^T)$ Or equivalently, $R(A^T) = N(A)^{\perp}$ Applying the orthogonal complement dire

$$\mathbb{R}^N = N(A) \oplus N(A)^{\perp} = N(A) \oplus R(A^T)$$

Symmetrically, we study

 $R(A)^{\perp} = \{ y \in \mathbb{R}^{M} : y^{T}z = 0, \forall z \in R(A) \} = \{ y \in \mathbb{R}^{M} : y^{T}Ax = 0, \forall x \in \mathbb{R}^{N} \} = \{ y \in \mathbb{R}^{M} : A^{T}y = 0 \} = N(A^{T})$ Therefore, $R(A) \perp N(A^{T})$

Applying the orthogonal complement direct sum theorem in the previous section, we have:

 $\mathbb{R}^M = R(A) \oplus R(A)^{\perp} = R(A) \oplus N(A^T)$

Summarizing the discussions above, we have the fundamental theorem of linear algebra:

 $R(A^{T}) = N(A)^{\perp}, \qquad R(A)^{\perp} = N(A^{T})$ $\mathbb{R}^{N} = N(A) \bigoplus R(A^{T}), \qquad \mathbb{R}^{M} = R(A) \bigoplus N(A^{T})$ $\dim(N(A)) + \operatorname{rank}(A) = N, \qquad \dim(N(A^{T})) + \operatorname{rank}(A) = M$ $\dim(N(A)) + \dim(N(A)^{\perp}) = N, \qquad \dim(R(A)^{\perp}) + \dim(R(A)) = M$ $\dim(N(A)) + \dim(R(A)) = N, \qquad \dim(R(A)^{\perp}) + \dim(N(A)^{\perp}) = M$

The last three lines are because: the row rank is equal to the column rank:

 $\operatorname{rank}(A) = \dim(R(A)) = \dim(R(A^T)) \le \max\{M, N\}$

but the relationship between $\dim(N(A))$, $\dim(N(A^T))$ are not so straightforward.

This theorem is beautiful for its high symmetry! In addition, it could explain a lot of phenomenon in the world of linear equality.

Applications of Range/Nullspace

- If M < N, then A cannot be injective. How comes? $\dim(N(A)) = N - \operatorname{rank}(A) \ge N - M > 0$, which says N(A) has non-zero vectors.
- Given linear equation Ax = 0 (*N* variables and *M* equations). If the number of equations is smaller than the number of variables (M < N), then there exist non-zero solutions.
- If M > N, then A cannot be surjective. How comes? $\dim(R(A)) = N - \dim(N(A)) < N < M$
- How comes? $\dim(R(A)) = N \dim(N(A)) \le N < M$, which says R(A) cannot fill up the whole image space.
- Given linear equation Ax = b (*N* variables and *M* equations). If the number of equations is larger than the number of variables (M > N), then the equation may be infeasible. Ax = b is infeasible iff $b \in \mathbb{R}^M \setminus R(A)$.

Reflections: all the discussions above are happening within the real number field $\mathbb{F} = \mathbb{R}$ and the vector spaces are Euclidian. We did not discuss the situation when matrix (transformation) A is abstract. I may step onto that further.

References

[1]<u>Optimization Models</u>, Book, G.C. Calafiore and L. El Ghaoui, Cambridge University Press, October 2014 [2] A Chinese Article

https://github.com/frank1ma/LinearAlgebraQuickReview/blob/master/pdf/Introduction_to_Linear_Algebra-ch03.pdf