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RRRRanananange and Nullspacege and Nullspacege and Nullspacege and Nullspace    

Here we do a brief introduction about the image space (range) and null space (kernel space) of a matrix (or a linear 
transform) ����. The range (or the image space) of � is defined as ���� � im��� � ���: � ∈ ℝ��, null space (or 
kernel space) of � is defined as ���� � ker��� � ��: �� � 0, � ∈ ℝ��. 
���� is subspace of ℝ� and ���� is subspaces of ℝ�. This can be shown by: ��� � ��� � ���� � ���. 
Now, let us consider the exact meaning of ���� and ����. Take � as a linear transformation �: ℝ� → ℝ�. 

- First, consider the meaning of null (kernel) space. Reflect for a while about the naming of kernel space. It means that: 
any vector in ker��� is compressed into the same zero vector when applying �, which is like a kernel. 
If � is injective (which means that “if ��� � ���, then �� � ��”), then it is safe to say that the null space is �0�. 

Why? If dim������ � 0, then there exist non-zero vectors ��, �� ∈ ����, �� � ��, and then we have (by definition) 
��� � 0, ��� � 0, therefore ��� � ���. By the injective assumption, �� � ��, which leads to contradiction. 
In the linear equality context, when ���� � �0�, then �� � 0 only has zero solution. Therefore, ���� is also the 
solution space of �� � 0. 

- Then, consider the meaning of the range (or the image space). 
The range of � is straightforward to understand: it consists of the images of linear transformation �. 

If � is surjection (which means that “∀! ∈ ℝ�, ∃� ∈ ℝ� s.t. �� � !”), then dim������ � #. How to understand 
this? It is better to write � � $%�, … , %�', %( ∈ ℝ�. �� is actually %��� � ⋯ � %���, which is linear combination of 

column vectors of � . Therefore, rank�%�, … , %�� � dim�span�%�, … , %��� � dim������ . Then according to the 
surjection assumption, %��� � ⋯ � %���  could fill up the whole ℝ� , which means that the �  basis vectors 
%�, … , %� has rank #. 

 

Now, we move onto a very meaningful theorem: dim������ � dim������ � � 
Why? 
Before justifying this, we detour a little… 

Orthogonal Complement oOrthogonal Complement oOrthogonal Complement oOrthogonal Complement of a Subspacef a Subspacef a Subspacef a Subspace    
This part assumes readers have known the concepts of inner product and vector orthogonal. 

Assume that . is a subspace of an inner-product space /. A vector � is said to be orthogonal to a subspace . iff 
∀0 ∈ ., 〈�, 0〉 � 0. This relationship is denoted as � ⊥ .. 
The orthogonal complement of . is defined as .4 � ��: � ⊥ ., � ∈ /�. 
This leads to an important theorem: any inner-product space / could be decomposed into a subspace . ⊆ / 
and its orthogonal complement .4, written as / � .⨁.4 � �0 � 04: ∀0 ∈ ., 04 ∈ .4� 

 
Proof is left out, but here shows several figures to illustrate this idea. The proof follows this logic line: suppose that 
.⨁.4 � /, then there exists a vector 7 ∈ / and 7 ⊥ . but 7 ∉ .⨁.4, then 7 ∈ .4, which says 7 ∈ .⨁.4. 
Here is a property: . ∩ .4 � �0�. This is because if � ∈ . ∩ .4, then 〈�, �〉 � 0 



Orthogonal Complement Orthogonal Complement Orthogonal Complement Orthogonal Complement ofofofof    RRRRange/Nullsange/Nullsange/Nullsange/Nullspacepacepacepace    

Equipped with the concept of orthogonal complement, we are now able to discover the relationship between range 
and nullspace of �. 
We could observe that ∀� ∈ ���:�, ∀7 ∈ ����, there must be 〈�, 7〉 � 0. This could be proved by: 

�:7 � ��:;�:7 � ;:��7� � 0 
Therefore, we have ���� ⊥ ���:� 
Or equivalently, ���:� � ����4 
Applying the orthogonal complement direct sum theorem in the previous section, we have: 

ℝ� � ����⨁����4 � ����⨁���:� 
 
Symmetrically, we study 

����4 � �; ∈ ℝ�: ;:7 � 0, ∀7 ∈ ����� � �; ∈ ℝ�: ;:�� � 0, ∀� ∈ ℝ�� � �; ∈ ℝ�: �:; � 0� � ���:� 
Therefore, ���� ⊥ ���:� 
Applying the orthogonal complement direct sum theorem in the previous section, we have: 

ℝ� � ����⨁����4 � ����⨁���:� 
 
Summarizing the discussions above, we have the fundamental theorem of linear algebra: 

���:� � ����4, ����4 � ���:� 
ℝ� � ����⨁���:�, ℝ� � ����⨁���:� 

dim������ � rank��� � �, dim����:�� � rank��� � # 
dim������ � dim�����4� � �, dim�����4� � dim������ � # 
dim������ � dim������ � �, dim�����4� � dim�����4� � # 

The last three lines are because: the row rank is equal to the column rank: 

rank��� � dim������ � dim����:�� ≤ max�#, �� 
but the relationship between dim������ , dim����:�� are not so straightforward. 
 
This theorem is beautiful for its high symmetry! In addition, it could explain a lot of phenomenon in the world of linear 
equality. 
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- If # < �, then � cannot be injective. 

How comes? dim������ � � − rank��� ≥ � − # > 0, which says ���� has non-zero vectors. 
- Given linear equation �� � 0 (� variables and # equations). If the number of equations is smaller than the 

number of variables (# < �), then there exist non-zero solutions. 
- If # > �, then � cannot be surjective. 

How comes? dim������ � � − dim������ ≤ � < #, which says ���� cannot fill up the whole image space. 
- Given linear equation �� � ! (� variables and # equations). If the number of equations is larger than the 

number of variables (# > �), then the equation may be infeasible. �� � ! is infeasible iff ! ∈ ℝ�\����. 
 
Reflections: all the discussions above are happening within the real number field D � ℝ and the vector spaces are 
Euclidian. We did not discuss the situation when matrix (transformation) � is abstract. I may step onto that further. 
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