Reflections on Linear Algebra: Range and Nullspace

This article assumes readers have already learned basic linear algebra for at least one time.

By Tongyu Lu, written on 13/01/2021

Range and Nullspace

Here we do a brief introduction about the image space (range) and null space (kernel space) of a matrix (or a linear transform) $A_{M \times N}$. The range (or the image space) of A is defined as $R(A)=\operatorname{im}(A)=\left\{A x: x \in \mathbb{R}^{N}\right\}$, null space (or kernel space) of A is defined as $N(A)=\operatorname{ker}(A)=\left\{x: A x=0, x \in \mathbb{R}^{N}\right\}$.
$R(A)$ is subspace of \mathbb{R}^{M} and $N(A)$ is subspaces of \mathbb{R}^{N}. This can be shown by: $A x_{1}+A x_{2}=A\left(x_{1}+x_{2}\right)$.
Now, let us consider the exact meaning of $R(A)$ and $N(A)$. Take A as a linear transformation $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$.

- First, consider the meaning of null (kernel) space. Reflect for a while about the naming of kernel space. It means that: any vector in $\operatorname{ker}(A)$ is compressed into the same zero vector when applying A, which is like a kernel.
If A is injective (which means that "if $A x_{1}=A x_{2}$, then $x_{1}=x_{2}$ "), then it is safe to say that the null space is $\{0\}$. Why? If $\operatorname{dim}(N(A)) \neq 0$, then there exist non-zero vectors $v_{1}, v_{2} \in N(A), v_{1} \neq v_{2}$, and then we have (by definition) $A v_{1}=0, A v_{2}=0$, therefore $A v_{1}=A v_{2}$. By the injective assumption, $v_{1}=v_{2}$, which leads to contradiction.
In the linear equality context, when $N(A)=\{0\}$, then $A x=0$ only has zero solution. Therefore, $N(A)$ is also the solution space of $A x=0$.
- Then, consider the meaning of the range (or the image space).

The range of A is straightforward to understand: it consists of the images of linear transformation A.
If A is surjection (which means that " $\forall b \in \mathbb{R}^{M}, \exists x \in \mathbb{R}^{N}$ s.t. $A x=b$ "), then $\operatorname{dim}(R(A))=M$. How to understand this? It is better to write $A=\left[a_{1}, \ldots, a_{N}\right], a_{i} \in \mathbb{R}^{M} . A x$ is actually $a_{1} x_{1}+\cdots+a_{N} x_{N}$, which is linear combination of column vectors of A. Therefore, $\operatorname{rank}\left(a_{1}, \ldots, a_{N}\right)=\operatorname{dim}\left(\operatorname{span}\left(a_{1}, \ldots, a_{N}\right)\right)=\operatorname{dim}(R(A))$. Then according to the surjection assumption, $a_{1} x_{1}+\cdots+a_{N} x_{N}$ could fill up the whole \mathbb{R}^{M}, which means that the N basis vectors a_{1}, \ldots, a_{N} has rank M.

Now, we move onto a very meaningful theorem: $\operatorname{dim}(R(A))+\operatorname{dim}(N(A))=N$
Why?
Before justifying this, we detour a little \cdots

Orthogonal Complement of a Subspace

This part assumes readers have known the concepts of inner product and vector orthogonal.
Assume that S is a subspace of an inner-product space \mathcal{X}. A vector x is said to be orthogonal to a subspace S iff $\forall s \in S,\langle x, s\rangle=0$. This relationship is denoted as $x \perp S$.
The orthogonal complement of S is defined as $S^{\perp}=\{x: x \perp S, x \in \mathcal{X}\}$.
This leads to an important theorem: any inner-product space \mathcal{X} could be decomposed into a subspace $S \subseteq \mathcal{X}$ and its orthogonal complement S^{\perp}, written as $\mathcal{X}=S \oplus S^{\perp}=\left\{s+s^{\perp}: \forall s \in S, s^{\perp} \in S^{\perp}\right\}$

Proof is left out, but here shows several figures to illustrate this idea. The proof follows this logic line: suppose that $S \oplus S^{\perp} \neq \mathcal{X}$, then there exists a vector $z \in \mathcal{X}$ and $z \perp S$ but $z \notin S \oplus S^{\perp}$, then $z \in S^{\perp}$, which says $z \in S \oplus S^{\perp}$. Here is a property: $S \cap S^{\perp}=\{0\}$. This is because if $v \in S \cap S^{\perp}$, then $\langle v, v\rangle=0$

Orthogonal Complement of Range/Nullspace

Equipped with the concept of orthogonal complement, we are now able to discover the relationship between range and nullspace of A.
We could observe that $\forall x \in R\left(A^{T}\right), \forall z \in N(A)$, there must be $\langle x, z\rangle=0$. This could be proved by:

$$
x^{T} z=\left(A^{T} y\right)^{T} z=y^{T}(A z)=0
$$

Therefore, we have $N(A) \perp R\left(A^{T}\right)$
Or equivalently, $R\left(A^{T}\right)=N(A)^{\perp}$
Applying the orthogonal complement direct sum theorem in the previous section, we have:

$$
\mathbb{R}^{N}=N(A) \oplus N(A)^{\perp}=N(A) \oplus R\left(A^{T}\right)
$$

Symmetrically, we study

$$
R(A)^{\perp}=\left\{y \in \mathbb{R}^{M}: y^{T} z=0, \forall z \in R(A)\right\}=\left\{y \in \mathbb{R}^{M}: y^{T} A x=0, \forall x \in \mathbb{R}^{N}\right\}=\left\{y \in \mathbb{R}^{M}: A^{T} y=0\right\}=N\left(A^{T}\right)
$$

Therefore, $R(A) \perp N\left(A^{T}\right)$
Applying the orthogonal complement direct sum theorem in the previous section, we have:

$$
\mathbb{R}^{M}=R(A) \oplus R(A)^{\perp}=R(A) \oplus N\left(A^{T}\right)
$$

Summarizing the discussions above, we have the fundamental theorem of linear algebra:

$$
\begin{array}{cl}
R\left(A^{T}\right)=N(A)^{\perp}, & R(A)^{\perp}=N\left(A^{T}\right) \\
\mathbb{R}^{N}=N(A) \oplus R\left(A^{T}\right), & \mathbb{R}^{M}=R(A) \oplus N\left(A^{T}\right) \\
\operatorname{dim}(N(A))+\operatorname{rank}(A)=N, & \operatorname{dim}\left(N\left(A^{T}\right)\right)+\operatorname{rank}(A)=M \\
\operatorname{dim}(N(A))+\operatorname{dim}\left(N(A)^{\perp}\right)=N, & \operatorname{dim}\left(R(A)^{\perp}\right)+\operatorname{dim}(R(A))=M \\
\operatorname{dim}(N(A))+\operatorname{dim}(R(A))=N, & \operatorname{dim}\left(R(A)^{\perp}\right)+\operatorname{dim}\left(N(A)^{\perp}\right)=M
\end{array}
$$

The last three lines are because: the row rank is equal to the column rank:

$$
\operatorname{rank}(A)=\operatorname{dim}(R(A))=\operatorname{dim}\left(R\left(A^{T}\right)\right) \leq \max \{M, N\}
$$

but the relationship between $\operatorname{dim}(N(A)), \operatorname{dim}\left(N\left(A^{T}\right)\right)$ are not so straightforward.

This theorem is beautiful for its high symmetry! In addition, it could explain a lot of phenomenon in the world of linear equality

Applications of Range/Nullspace

- If $M<N$, then A cannot be injective.

How comes? $\operatorname{dim}(N(A))=N-\operatorname{rank}(A) \geq N-M>0$, which says $N(A)$ has non-zero vectors.

- Given linear equation $A x=0$ (N variables and M equations). If the number of equations is smaller than the number of variables $(M<N)$, then there exist non-zero solutions.
- If $M>N$, then A cannot be surjective.

How comes? $\operatorname{dim}(R(A))=N-\operatorname{dim}(N(A)) \leq N<M$, which says $R(A)$ cannot fill up the whole image space.

- Given linear equation $A x=b$ (N variables and M equations). If the number of equations is larger than the number of variables $(M>N)$, then the equation may be infeasible. $A x=b$ is infeasible iff $b \in \mathbb{R}^{M} \backslash R(A)$.

Reflections: all the discussions above are happening within the real number field $\mathbb{F}=\mathbb{R}$ and the vector spaces are Euclidian. We did not discuss the situation when matrix (transformation) A is abstract. I may step onto that further.

References

[1]Optimization Models, Book, G.C. Calafiore and L. El Ghaoui, Cambridge University Press, October 2014
[2] A Chinese Article
https://github.com/frank1ma/LinearAlgebraQuickReview/blob/master/pdf/Introduction_to_Linear_Algebra-ch03.pdf

