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It is assumed that readers have known the concepts about harmonic (overtone) structure of musical notes. And readers are recommended 
to know the non-negative matrix factorization (NMF) algorithm. But anyway, I tried to briefly elaborate it in this article. 
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In automatic music transcription (AMT, or more precisely, multipitch estimation), sometimes we maintain a timbre 

dictionary � to store the overtone structure of musical notes. 
For example, when we play the 70th piano key and record the sound for duration �, we may have a spectrogram of 

the audio recording, which is written as ��,��. It may look like this: 

 
(This figure is cited from B. Jacobson, Combined-channel instantaneous frequency analysis for audio source separation based on comodulation, Thesis (Ph. D.)) 

If we only concentrate on one moment, we extract a time bin like this: 

 
We observe that the high-intensity frequency bins distribute uniformly in the frequency axis. 

 
Now, we get to our problem: what if we want to learn such a timbre dictionary from given audio? 
Apparently, this is a large topic. It requires us to 1. design representations of inputs/outputs/parameters/model-
structure, and 2. to design the optimization algorithm in order to converge into such a reasonable dictionary. 
 

Suppose we have already done step 1 and our parameter involves a timbre dictionary ��	
	�, where � 
 88 is 
the number of different piano keys (components) and � is the timbre diversity we want to consider for each piano 
key. And the problem is that, when we operate our optimization algorithm, the timbre dictionary may not converge 
into the desired overtone-structured codebook for piano keys, but may look like this: 

 
(In the two figures above, the x-axis is �, the key dimension, while the y-axis is �, the frequency-bin dimension. The � dimension is squeezed for 
simplicity. In the rest of this article, the � dimension is squeezed. Readers may interpret � dimension as considering both � and �. The left one 
is the desired timbre dictionary, while the right one is the timbre dictionary converged. The two figures are generated by Tongyu Lu through experiments.) 

 
We can see that the second one is poorly structured. For example, component #0, #30 and #87 are noisy. This is 

undesirable, because: when we apply this dictionary to reconstruct the audio spectrogram, it is not semantically 
meaningful. Therefore, we want to force our model parameter � to converge into a harmonically correct timbre 
dictionary. What can we do about it? 
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Emmanuel Vincent proposed a template-based harmonic constraint method in 2018, in paper [1]Harmonic and 

inharmonic Nonnegative Matrix Factorization for Polyphonic Pitch transcription. That method evolved into a 
probabilistic version by Nancy Bertin, Roland Badeau and Emmanuel Vincent in paper [2]Enforcing Harmonicity and 
Smoothness in Bayesian Non-negative Matrix Factorization Applied to Polyphonic Music Transcription. This section 
reviews that method. 
They factorize each dictionary component ��,� 
 ��: , �� as the weighted sum of templates ��,�,� ∈ ℝ�� , written as 

��,� 
 � ��,�,���,�
�

 

where ��,� � 0,  
 1, … , # 
Vectors ��,�,� are pre-defined overtone-templates, which look like: 

 
(this figure is cited from paper [2]. According to [1,2], such templates are perceptually defined as narrow-band spectra) 

And finally, the weighted summation of those templates becomes ��,�. As you may see, ��,� are the weights for 
each component ��,�,�. The summation may look like: 

 
(this figure is cited from paper [2]) 

We can understand this factorization from the point of view of basis. 
Define the harmonic space ℍ� ⊂ ℝ��  as such: choose # “basis” vectors ��,�,� ∈ ℝ��  and define ℍ as the 

conic combination of ��,�,�,  
 1, … , # , i.e., ℍ� 
 &∑ ��,�,���,�� : ��,� � 0,  
 1, … , #) . Our task is then 
translated from directly estimating �*,� , + 
 1, … , �;   � 
 1, … , �  into estimating weight factors ��,� ,  

1, … , #;   � 
 1, … , �. Easy to see, ℍ� is the domain where ��,� is defined. 
 

In an NMF context (if NMF seems unfamiliar to you, feel free to check [3]A tutorial on Nonnegative Matrix 
Factorisation with applications to audiovisual content analysis), the formula - 
 �. becomes - 
 /012. . (The 
product 01 is not the matrix product in a traditional sense, but is defined as  � 
 01 
 3�4,� , … , �*,�5 where 
��,� 
 ∑ ��,�,���,�� ) 
 

Actually, when we define the timbre dictionary �, we want to solve the optimization problem: 
minimize 6/�.|-2 over � 

subject to � � 0,  -8 
 �. 

where: - is the given spectrogram and . is the target music score 

 
Enforcing the harmonic constraint above, this problem becomes 

minimize 69/012.|-: over 1 

subject to 1 � 0, -8 
 �. 

where: - is the given spectrogram, . is the target music score and 0 is the pre-defined templates 
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The previous section showed that how hard-constraint proposed in [1] is represented. In [2], the hard-constraint in 

[1] was derived into a probabilistic version, which was inspired by a theorem proved in [4]Bayesian extensions to non-
negative matrix factorisation for audio signal modelling. Here is an introduction to such theorem: 
- Paper [4] says that in a typical NMF context, when 69-8|-: 
 ∑ ;�<9=>*,?|=*,?:*,? , then the distributions of =>*,? are 

Poisson. Specifically, the spectrogram components =>*,?  could be written as summations of components, i.e., 

=>*,? 
 ∑ @A*,�,?@� . Such component @A*,�,?@ is treated as random variable @A*,�,?@~Poisson/�*,�ℎ�,?2, which leads to 
=>*,?~Poisson/∑ �*,�ℎ�,?� 2. 

- Paper [5]Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis 
subsequently proved that, when Itakura-Saito difference is applied, i.e., 69-8|-: 
 ∑ ;IJ9=>*,?|=*,?:*,? , then the 
distributions of =>*,?  are Gaussian. Specifically, =>*,? 
 ∑ @A*,�,?@� , and A*,�,? ∈ ℂ , which satisfies 
A*,�,?~LM90, �*,�ℎ�,?:, where LM/N, Σ2 is the proper complex Gaussian distribution. 

 
The probabilistic interpretation of the original NMF problem (as introduced above) is actually a detour: it converts 

the original matrix-product construction in NMF into a generative process under parameter �. Solving the maximum 
likelihood problem for =>*,?  under parameter �  certain pre-defined distributions (Poisson/Gaussian) is actually 
equivalent to solving the optimization problem for variable � with certain cost functions (KL/IS). 

This gives a hint to solve the optimization problem: it is transformed into a maximum likelihood (ML) problem, 
which could be solved using EM algorithm. Paper [2] gave the update rule in the NMF context: 
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Introduction: ML vs. MAP 
Under the hard-constraint mentioned in [1], each dictionary component ��,� is restricted within ℍ� ⊂ ℝ�� . This 

may lead to a problem: if the instruments do generate noise (e.g., the hammer of a piano key hitting the string, 
bringing noisy spectrum), the dictionary is not good at considering that. [2] did not solve this problem because its 
probabilistic modeling is not a permission to noise, but actually a detour to solving the deterministic optimization 
problem with EM algorithm in an ML framework. 

What if we allow the model to consider a little bit noise? To do this, we must derive a soft-constraint on ��,� 
without confining it within ℍ�. A reasonable way is to define prior distribution functions ��: ℝ�� → �0,1� for every 
��,�. The distribution tells us the likelihood for every point in ℝ��  that ��,� may situate. If the distribution tells us 
the likelihood is small, it does not say that it is impossible. The prior distribution �/�2 could be used to model the 
harmonic constraint, which is the idea of maximum a-posteriori (MAP). 

To consider the prior, we just need to modify the original problem into: 
minimize 6/�.|-2 Q R/�2 over � 

subject to � � 0 

where: - is the given spectrogram and . is the target music score 

The function R/�2 is a regularization term which represents the prior knowledge on �. 
Why it could represent prior knowledge? This leads to the comparison between maximum likelihood (ML) and 

maximum a-posteriori (MAP). 
- ML says: given parameter S and data 6, we want to maximize �/6|S2, or to minimize T log �/6|S2, which leads 

to the loss function; 
- MAP says, given parameter S and data 6, we want to maximize �/S|62, or to minimize T log �/S|62, which 

leads to the loss function and the regularization term. Here is the trick: 

T log �/S|62 
 T log �/6|S2�/S2
�/62 
 T log �/6|S2 T log �/S2 Q const 



The term T log �/S2 is the regularization term. 
 

In the context of timbre dictionary, the parameter is �. Therefore, R/�2 is proportional to T log �/�2. Then 
comes the question: how to define �/�2? 

It should tell us such prior information: 
1. if ��,�  has overtone on +�,� , +4,� , … , we expect that �*Y,Z,�  is roughly the strongest among all frequency 

dimensions. 
2. +�,� , +4,� , … should define peaks in the frequency axis 
 

The first prior knowledge tells us that: [3�*Y,Z,�5 > [3�*,�5, ∀+ ∈ �0, ��, + ≠ +�,� 
The second prior knowledge tells us that: define a function 1�/+2 
 [3�*,�5 , then 1�/+2  has peaks at + 


+�,� , +4,� , … 
 
Now, if we treat 1�/+2 in the manner of [1], we say that 1�/+2 
 ∑ ��,�,���,�� . And we observe that such 

interpretation considers both prior conditions above. But where is the difference of this MAP idea between [1]? 
Here comes my model: 

Adjustable Harmonic Regularization: to be Realistic or Idealistic 
Assume that each dictionary component is subject to a log-normal prior distribution. Which says: 

log �*,� ~L/�1�/+2�_`, ab2 
Define �_` 
 10 lg � (log by element), and  �c 
 �1�/+2� 
Assume that �/�_`2 
 ∏ 4

√bfg exp T k3lm,Z5no��pZ/*2�noqr

bgr�,* 
 4
√bfg kexp Ts�_` T �c_`sb

�/2abq . (Note that this 

assumption does not indicate that �*,� are independent, because they are linked by 1�/+2.) 

Then, T log �/�_`2 
 s�_` T �c_`sb
�/2ab Q const ≜ ws�_` T �c_`sb

� 
Therefore, the MAP version of NMF becomes 

minimize 6/�.|-2 Q ws�_` T �c_`sb
� over � 

subject to � � 0 

where: - is the given spectrogram and . is the target music score 

 
There is one thing that remains uncertain: should �c_` be an adjustable parameter or fixed? 
My choice is to let it be adjustable within the pre-defined ℍ_`. 
Here is the idea: �_` is realistic, while �c_` is idealistic. 

- �_`  is realistic means that it is devoted to approximating real spectrogram. And thus, its mission is to do 
spectrogram reconstruction. 

- �c_` is idealistic means that it does not care whether reconstruction is beautifully achieved, but cares about its 
ideal that it should always obey harmonic constraints. 

- The role of regularization term is to make �_` more idealistic while making �c_` more realistic (for example, 
relative amplitudes of overtone peaks in �c_` should adapt to the target instrument). 

We have to exert our prior knowledge on �c_` such that it obeys harmonic constraint. Here is where paper [1] 
comes into use: we can assume that �x*,� 
 1�/+2 
 ∑ ��,�,���,�� . 

Now, our problem becomes: 

minimize 6/�.|-2 Q ws�_` T �c_`sb
� over �_`, 1 

subject to 1 � 0, �c 
 01, � 
 10yno/4�, �c_` 
 10 lg �c  

where: - is the given spectrogram, . is the target music score and 0 is the pre-defined templates 
I am not going to elaborate the algorithm to solve this newly-proposed problem. But I expect that it could be 

solved without resorting to MU algorithm or EM. With the dB-trick (going to be introduced in the next section), I 
expect that it could be solved by gradient descent. 

What is the dB Version of NMF? 
In the statements above, the dB version of NMF problem was used. 
In this problem, the parameter �_`  is not subject to non-negative constraint. This is good news for neural 



networks! When doing optimization, the neural network does not care if its parameters are negative or positive, which 
makes it impossible to leverage the traditional NMF structure in neural networks. But when equipped with the log 
trick, we do not need to worry about the feasibility of maintaining a timbre dictionary. What we need to do is to add 
an “Amp2dB” layer and a “dB2Amp” layer, and both are differentiable. 

 
Here comes the algorithm for spectrogram reconstruction and parameter update: 

Input: spectrogram -, its piano-roll matrix . 
Parameter: �_` 
Algorithm: 
1. � 
 dB2Amp/�_`2 
2. -8 
 �. 
3. compute reconstruction loss ~�9-8|-: 
4. update �_` using ∇yno~�9-8|-: 

 
Or we could do this totally in dB: 

Input: spectrogram -_` , its piano-roll matrix . 
Parameter: �_` 
Algorithm: 
1. � 
 dB2Amp/�_`2 
2. -8 
 �. 
3. -8_` 
 Amp2dB9-8: 
4. compute reconstruction loss ~���9-8_`|-_`: 
5. update �_` using ∇yno~���9-8_`|-8_`: 

 
It is super simple! In the context of traditional NMF, we have to use MU algorithm or EM algorithm in order to 

maintain non-negativity. But now we could just use gradient descent! 
I am now concerned with several questions: 1. is this log trick already considered? 2. is this log trick realistic? 

(for example, will the “dB2Amp” operation explode the gradient and subsequently make it impossible) 
So far, I have not noticed relevant works on this log trick. But I still do not know if it is realistic, and I am going to 

do several experiments on that. 
Also, we have to consider the constraint 1 � 0 if we want to solve the newly proposed problem (as formalized at 

the end of the previous section). It is not a tough problem because we could apply an abs function or a softmax 
function to the model parameter which are expected to be 1. I will elaborate my gradient-descent solution to the 
dB-NMF problem in other articles. 
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