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Pre-requisites:

1. Knowing the Bayes theorem;
2. Itis recommended that readers have gone through elementary training about statistics.
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Beta Distribution

Introduction

« Beta distribution is over real values on [0, 1]
» Therefore, Beta distribution is useful for modeling percentages and proportions
« The pdf is proportional to x~1(1 — x)#~1


https://www.zhihu.com/question/30269898
https://www.bilibili.com/video/BV1JD4y1m7TP

« Observe that Bernoulli distribution pmf: P(X = xlp) = p*(1 — p)1™*, x = 0, 1; therefore,
Beta distribution could be regarded as “a continuous version of Bernoulli”.
o Beta distribution pdf examples:

probability density function
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Definition of Beta Distribution

Beta distribution pdf is

_ 1 -1 _ -1 _ F(a + ﬁ) -1 _ —1
pirla,f) = & @B 11 -xfl = T +TH 2711 - x)f
The expectation is E[X] = a;_'l’_ﬂ

Intuitions of this pdf:

« When f = 1, then the distribution is exponential (and actually a = 5)
¢ When ﬁ = a, then the distribution is symmetric around x = 0.5

Just skip the Gamma function, because it just serves as normalization term.
Note that ¢, # > 0 and x € [0, 1]



Dirichlet Distribution

Introduction

« Dirichlet distribution is a generalization of Beta distribution for multiple random variables
(RVs).
« Actually, Dirichlet distribution is tailored for vectors whose components are all in [0, 1] and

the sum of its components is 1.

T, [(alk])

Ty Wect XK1 where
k=1

The Dirichlet distribution pdf is defined as such: p(xla) =
K
a € R}

« Example: if @ = [1, 1, 1], then the Dirichlet distribution is uniform within triangular space

Xx1+x+x3=1,x>20
« Dirichlet distribution could be regarded as a continuous version of multinomial distribution.

Intuitions of Beta Distribution

To understand the user cases of Beta distribution, the key might come from that the RV X is

restricted betwee 0 and 1.
Think: what kind of values situate between 0 and 1?

e Probabilities

« Proportions x/y whenx >0,y >0andx <Yy

» Percentages etc.
Therefore, way could say that Beta distribution may come into use when we want to model
an RV which represents probabilities or proportions.

Beta Distribution could Model Rates

For example, if we want to model the distribution of winning rate (maybe we are interested in a
game player), we just need to estimate a, g for it. A handy method is that: assume that player
has played for 300 games, where 81 of them wins. Then, we could say that the distribution for the
winning rate x is Beta(81 + 1,219 + 1). When that player played another 300 games, where
100 of them wins, then we say that the distribution for the winning rate x becomes

Beta(81 + 100+ 1,219+ 200 + 1).

Why saying that ¢ is the number of winning plus one? | will reveal this in the next part.



Beta Distribution could Model Probabilities and
Parameters

Suppose we are doing a coin flipping game. The probability of “head top” is @. But we do not
know @ exactly (maybe the coin is fake, we cannot say that @ = (.5). How to estimate it?

First, we model this problem in statistic language: RVs X}, are subject to a Bernoulli distribution
B(0). We want to estimate the distribution parameter .

An easy method is: we do A + B games, where we have A head tops. Then we may say that

0 =A/(A+ B).

Well, of course that is OK. Because that is indeed an unbiased estimation for @ (which is a result
of maximum-likelihood estimation). However, are we 100% certain about that? What if

0 = A/(A+ B) —0.0001?

Obviously, we cannot say that @ is exactly A/(A + B). We can only say that A/(A + B) is a likely
value of @. But how confident are we on that estimation? Here is where beta distribution is of use.

Return to our experiments. If Y, p = Z‘]:f X; denotes the number of “head top” cases after
we have done A + B experiments, we could say that P(Ys,.p = Al@) = Cﬁ_,_BGA(l - 98
(which is the likelihood). This likelihood is a function of @.

Define [y g(6) = P(Ya+p = AlO) = C4, 564 (1 — 6)5.

We want the distribution of @. Therefore, what we want is actually p(61Y44p = A).

Solution:

1. Plug in Bayes's rule: p(@1¥asp = A) = P(Yarp = AlO)p(0)/P(Yasp = A).
2. The term p(@) is our prior on @. If we have no idea about the coin, we may say that
p@) = 1,0 € [0, 1]. Generally, we could assume that the prior distribution of § is a Beta
distribution Beta(ayg, fp)- In the “I do not know anything about the coin” case, ag = fy = 1
3. The term P(Y4,p = A) is a constant. Actually, we could do integral to get this constant:
P(Yass = A) = [y las@)p(©)d0 = B~ (ao, o) [y Ch,50* "' (1 - 0y*ho=1do

4. Summing up the discussions, we have:
CA, 04 (1 - 6)P =1 (1 — gt
B((Jlo,ﬁo)B‘l(Oto,ﬂo)fo1 C4, z04F0=1(1 — 9)B+ho~140

p(OYsp =A) =

3 0A+a0—1(1 _ 0)B+ﬂ0—1
/01 9A+a0—1(1 _ 9)B+ﬂ0—1d9

5. Skipping the “Beta\Gamma calculus”, we conclude that

9A+a0—1(1 _ 0)B+ﬂ0—1
B(A + ag,B + po)

p(OYpp =A) =



Oh! The magical thing happens: after doing experiments, our belief of parameter @ changes from
Beta(ay, po) to Beta(A + ap, B + o).

For example, if we firmly believe that the coin is biased before experiments (e.g., @y = 2,60 = 5
), then after getting results A = 1000, B = 1000, we could say that we now believe the coin is
nearly unbiased because its posterior distribution is Beta(1002, 1005).

P
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Intuitions behind Conjugate Distribution

In the coin flipping game, we have two main RVs: 1. the flipping results Xy ; 2. the parameter 9.
Their relationship: X}, is subject to B(8), @ is subject to prior Beta(ayg, fo)-

After experiments, we could calculate the posterior of @, which is magically

Beta(A + ap, B + o).

This magical Beta prior distribution (which remains Beta as posterior) of a Bernoulli RV is called
“the conjugate distribution of Bernoulli distribution”.

Generally, we have a RV whose distribution px(xI®) is controlled by parameter ® whose prior
distribution is pg(@la), where g controls the prior distribution.

After observing a bunch of data Xj.x = [Xz,k =1, ..., K], we may have a posterior distribution
Deix,x (0) = pe (Ola)px (X1:x10)/p(X1:x ). Here comes the definition of conjugate distribution:

if there exists @, such that posterior distribution peix,.. (€) = pe(0l&), then we say that the
density function pg defines a conjugate distribution of px.



In other words, “pg (Bla) and px (xI®) are conjugate” if and only if “given any prior parameter
and observation Xj.g, there exists parameter ¢ and constant ¢, such that:

pe(0la) = cpe (Ala)px (X1:x16), V6.

In the Bernoulli-Beta case, given prior parameter @y, By, there exists parameter
a=A+ 050,3 = B + fp and constant ¢ = (fol @A+a0—1(1 — g)B+ho—14g)~1 such that
Peix,. (0) = pe(01&) = cpe (Ola)px (X1:x10), V6.

Not every distribution has conjugate distribution. But we could say that all “exponential family
distributions” have conjugate distribution. What on earth are “exponential family distributions”?
We leave this topic to further discussions.

Comments on the pdf Notations

Normally, if | do not add footnotes on pdf (e.g. p(X1®), p(01Y4+p = A)), | treat the operation
p(-l-) as a functional which operates on RVs.
For example,

« p(X1®) is a functional on RVs X and @, where RV @ serves as prior for RV X;

o p(@lY44p = A) is a functional on RVs g, where RV Y4, p is given as A and serves as prior
for RV 4.

o Every “given(determined) RV” is marked in the “X = 5" form; “given RV” is a constant
actually.

If I add footnotes on pdf (e.g. px (x1®), pe(Ola). peix,. (6)). | treat the operation p_(-I-) as a
function, whose form is defined by notation p_.
For example,

» px(xI®) is a density function py which operates on variable x and this function is a random
function controlled by RV @®;

* pe(Bfla) is a density function pg which operates on variable @ and is controlled by a
determined parameter a;

* poix,, () is a density function pgx,, which operates on variable 6.

Sorry that in the conjugate function section | denote ® as RV while denote @ as variable, but in
the Beta distribution section | denoted @ as RV. Hope that you could understand.



