# Beta Regression vs. Logistic Regression

#### References:

- Peter Sadowski and Pierre Baldi, Neural Network Regression with Beta, Dirichlet, and Dirichlet-Multinomial Outputs, *ICLR*, 2019
- 2. Silvia Ferrari and Francisco Cribari-NetoBeta Regression for Modelling Rates and Proportions, *Journal of Applied Statistics*, 31:7, 799-815, DOI: 10.1080/0266476042000214501, 2004

### Pre-requisites:

- 1. Knowing the Maximum-likelihood criterion;
- 2. It is recommended that readers have known the concepts and basic applications of Beta distribution.
- 3. There will be a recap on how Maximum-likelihood criterion is applied to do regression (example from image classifier). But readers are recommended to have known such a process. (Anyway, I am going to try my best to explain that.)

Written by Tongyu Lu, March 15, 2021

#### **Contents:**

Beta Regression vs. Logistic Regression
Logistic Regression - Recap
Beta Regression - A Similar but Different Case
An Experiment for Beta Regression

### **Logistic Regression - Recap**

Assume that we want to do image classification between cats and dogs.

Each input tensor (image) is denoted as  $x \in [0, 256]^{B \times W \times C}$ , and each output is denoted as  $y \in \{0, 1\}$ . There corresponding random variables (RVs) are denoted by X and Y.

Our classifier is denoted as a function  $g(\cdot|\theta):[0,256]^{B\times W\times C}\to [0,1]$ , which predicts the probability of the image being a dog. Maybe this classifier is a CNN, but we do not really care about that right now; all we need to know is that the classifier is controlled by parameter  $\theta$ , which is to be optimized. Normally, we denote  $g(x|\theta)$  as  $\hat{y}$ .

What is the optimal parameter  $\theta$ ? Normally, we use the maximum-likelihood criterion to find that. How comes?

We start from the distribution of Y: it is Bernoulli because it is a either-or choice. Assume that the probability of "image x represents a dog" or "Y=1 given x" is  $\beta(x)$ . Then, we say that  $P(Y=y|x)=\beta(x)^y(1-\beta(x))^{1-y}, y=0,1$ .

Now, we want to see if  $\beta(x)$  gives the right answer. Actually,  $\hat{y} = \beta(x) = g(x|\theta)$ . To deal with this, we calculate the log-likelihood term

$$l(\theta) = \log(P(Y = y|x)) = y \log \beta(x) + (1 - y) \log(1 - \beta(x)) = y \log g(x|\theta) + (1 - y) \log(1 - g(x|\theta))$$

When we observe a bunch of data  $\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$ , we define the log-likelihood term as  $L(\theta) = \sum_{k=1}^N y_k \log g(x_k|\theta) + (1-y_k) \log (1-g(x_k|\theta))$ . All we want is to maximize the likelihood by adjusting parameter  $\theta$ .

The causal line for our model is that: " $\theta$  controls  $\beta$  when given x,  $\beta$  controls Y which gives the final result".

Therefore, in the language of machine learning, we define the loss function as  $loss(\theta) = -L(\theta) = -\sum_{k=1}^{N} y_k \log g(x_k|\theta) + (1-y_k) \log(1-g(x_k|\theta))$ . And we solve the unconstrained argmin problem  $\theta^* = \arg\min_{\theta} loss(\theta)$  by back-propagation.

And we say that this is a logistic regression, when  $\hat{y} = g(x|\theta) = \phi(f(x|\theta))$ , where  $\phi(z)$  is sigmoid function defined as  $\phi(z) = \frac{1}{1+e^{-z}}$ . In this case, we could find that (after calculation)  $l(\theta) = (1-y)f(x|\theta) - \hat{y}$ , which is a pretty simple form compared to the "log" form.

## Beta Regression - A Similar but Different Case

In the classification example, we assumed that the distribution of classifier output is Bernoulli. But actually, our output situates between 0 and 1.

Can this model be used for regressing variables which situate between 0 and 1, but do not obey Bernoulli distribution?

Of course we can, because the domain of our model output (between 0 and 1) is the same as the desired one. However, it is obvious that Bernoulli distribution is not tailored for a continuous random variable. In other words, there is something wrong with our loss function.

Recall that we define the loss function according maximum-likelihood criterion, which looks like:  $\log(\theta) = -L(\theta) = -\sum_{k=1}^{N} \log p_Y(y_k|\beta(x_k)), \text{ where } \beta \text{ serves as the parameter of the distribution of } Y$  and is determined by the input x.

The key is on the function  $p_Y$ : in the classification case,  $p_Y$  is binomial (Bernoulli) and discrete, but it could be other distributions.

Recall the Beta distribution: it is also suitable to model RVs which situate between 0 and 1! Here is a link to my introduction to Beta distribution and its applications on modeling percentages and model parameters: From Beta Distribution to Conjugate Distributions.

Let us have a brief comparison between Bernoulli discrete RV and Beta continuous RV:

• (Bernoulli) 
$$Y \sim B(\beta) \Leftrightarrow P(Y=y) = \beta^y (1-\beta)^{1-y}, y=0,1,\beta \in [0,1]$$
  
• (Beta)  $Y \sim Beta(\alpha,\beta) \Leftrightarrow p_Y(y|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)+\Gamma(\beta)} y^{\alpha-1} (1-y)^{\beta-1}, y \in [0,1], \alpha,\beta > 0$ 

Did you get it? Alternatively, we could model  $p_Y$  as Beta distribution. And now our likelihood function becomes

$$l(\alpha,\beta) = \log p_Y(y|\alpha,\beta) = \log \left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)+\Gamma(\beta)}y^{\alpha-1}(1-y)^{\beta-1}\right] = (\alpha-1)\log y + (\beta-1)\log(1-y) + \log \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)+\Gamma(\beta)}y^{\alpha-1}(1-y)^{\beta-1}$$

Alternatively, we could replace  $\alpha, \beta$  with parameter  $\mu, \gamma$ , where  $\alpha = \mu \gamma$  and  $\beta = (1 - \mu)\gamma$ . Parameter  $\mu \in (0, 1)$  is the mean, which is suitable for model output.

The role of our Beta-neural-network might be estimating  $\alpha, \beta$ , and calculate the final output as  $\mu = \alpha/(\alpha + \beta)$ . The loss function could be treated as  $loss(\theta) = -L(\theta) = -\sum_{k=1}^N log \, p_Y(y_k | \alpha(x_k), \beta(x_k))$ .

The feed-forward process may look like this:

Neural Network (Param=
$$\theta$$
)  $\mu = \frac{\alpha}{\alpha + \beta}$ 

Notice that  $\alpha, \beta > 0$ . Therefore, we could output them with a simple non-negative activate function.

### An Experiment for Beta Regression

I want to approximate  $f: \mathbf{R^6} \to [0,1]$  which is defined as  $f(x) = 0.5\cos(|\bar{x}|^{1.5} + 0.25\bar{x}^2) + 0.5$ , where  $\bar{x} = \frac{1}{6}\sum_{k=1}^6 x_k$ .

And I defined three NNs to approximate it:

```
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
import numpy as np
import math
import matplotlib.pyplot as plt
%matplotlib inline
class BetaNN(nn.Module):
    def __init__(self, mid=10):
        super(BetaNN, self).__init__()
        self.fc1 = nn.Linear(6, mid)
        self.fc2 = nn.Linear(mid, mid)
        self.fc3 = nn.Linear(mid, mid)
        self.fc_a = nn.Linear(mid, 1)
        self.fc_b = nn.Linear(mid, 1)
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = torch.cos(self.fc3(x))
        a = F.softplus(self.fc_a(x)).squeeze(1)
        b = F.softplus(self.fc_b(x)).squeeze(1)
        y = (a/(a+b))
        gamma = a+b
        return y, gamma
class LinearNN(nn.Module):
    def __init__(self, mid=10):
```

```
super(LinearNN, self).__init__()
        self.fc1 = nn.Linear(6, mid)
        self.fc2 = nn.Linear(mid, mid)
        self.fc3 = nn.Linear(mid, mid)
        self.fcy = nn.Linear(mid, 1)
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = torch.cos(self.fc3(x))
        y = F.relu(self.fcy(x)).squeeze(1)
        return y
class SigmoidNN(nn.Module):
    def __init__(self, mid=10):
        super(SigmoidNN, self).__init__()
        self.fc1 = nn.Linear(6, mid)
        self.fc2 = nn.Linear(mid, mid)
        self.fc3 = nn.Linear(mid, mid)
        self.fcy = nn.Linear(mid, 1)
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = torch.cos(self.fc3(x))
        y = F.sigmoid(self.fcy(x)).squeeze(1)
        return y
```

The dataset is defined as:

```
class VectorGenerator:
   def __init__(self, max_val = 10):
        self.max_val = np.abs(max_val)
   def gen_data(self):
        x1 = np.random.rand(2)*self.max_val*2-self.max_val
        x2 = np.random.rand(2)*self.max_val*2-self.max_val
        x3 = np.random.rand(2)*self.max_val*2-self.max_val
        x = np.concatenate((x1,x2,x3), axis=0).astype(np.float32)
class NonLinearFuncDataset(Dataset):
   def __init__(self, max_val = 10):
        self.generator = VectorGenerator(max_val = 10)
    def __getitem__(self, index):
        x = self.generator.gen_data()
        y = (np.cos(np.abs(np.mean(x))**1.5 + 0.25*np.mean(x)**2)+1)/2
        return x, y
    def __len__(self):
        return 1000000
```

Then, we design 4 experiments:

- 1. use L1 loss to train beta-activated nn
- 2. use L1 loss to train relu-activated nn

- 3. use BCE loss to train sigmoid-activated nn
- 4. use L1 loss to train sigmoid-activated nn

```
beta_nn = BetaNN(mid=10)
optimizer = optim.SGD(beta_nn.parameters(), lr=0.05)
linear_nn = LinearNN(mid=10)
optimizer2 = optim.SGD(linear_nn.parameters(), lr=0.05)
sigmoid_nn = SigmoidNN(mid=10)
optimizer3 = optim.SGD(sigmoid_nn.parameters(), lr=0.05)
sigmoid_nn_l1 = SigmoidNN(mid=10)
optimizer4 = optim.SGD(sigmoid_nn.parameters(), lr=0.05)
train_dataset = NonLinearFuncDataset(max_val = 3)
train_loader = DataLoader(dataset = train_dataset, batch_size = 12)
train_iter = iter(train_loader)
    x, y_true = next(train_iter)
   beta_nn.train()
   y_hat, gamma = beta_nn(x)
   loss = F.l1_loss(y_hat, y_true)
   loss.backward()
   loss_buf += loss.detach()
   optimizer.step()
   optimizer.zero_grad()
    linear_nn.train()
   y_{hat2} = linear_{nn(x)}
    loss2 = F.l1_loss(y_hat2, y_true)
    loss2.backward()
    loss_buf2 += loss2.detach()
   optimizer2.step()
    optimizer2.zero_grad()
    sigmoid_nn.train()
   y_hat3 = sigmoid_nn(x)
    loss3 = F.binary_cross_entropy(y_hat3, y_true)
    loss3.backward()
    loss_buf3 += F.l1_loss(y_hat3, y_true).detach()
    optimizer3.step()
    optimizer3.zero_grad()
    sigmoid_nn_l1.train()
   y_hat4 = sigmoid_nn_l1(x)
    loss4 = F.l1_loss(y_hat4, y_true)
    loss4.backward()
    loss_buf4 += loss4.detach()
    optimizer4.step()
    optimizer4.zero_grad()
```

```
i += 1
if i>=stop_iter:
break
```

After training, we get result like this:



As we could see: the beta-activation is a feasible candidate in the bounded regression problem setting, although it did not demonstrate salient superiority compared with relu-activation and sigmoid-activation.

However, when using negative-beta-likelihood as loss function, I observed failure:

```
def beta_loss(y_hat, gamma , y_true):
    a = y_hat*gamma
    b = gamma - a
    tmp1 = (a-1)*torch.lgamma(y_true)
    tmp2 = (b-1)*torch.lgamma(y_true)
    tmp3 = torch.lgamma(a+b)-torch.lgamma(a)-torch.lgamma(b)
    return torch.exp(-torch.sum(tmp1+tmp2+tmp3)*0.01)

while 1:
    x, y_true = next(train_iter)

    beta_nn_ml.train()
    y_hat1, gamma1 = beta_nn_ml(x)
    loss1 = beta_loss(y_hat1, gamma1 , y_true)
```

```
loss1.backward()
loss_buf1 += F.l1_loss(y_hat1, y_true).detach()
optimizer1.step()
optimizer1.zero_grad()

# hidden: print and update loss buffer
i += 1
if i>=stop_iter:
    break
```

### The result comes:



Therefore, future problems are to:

- 1. find typical user cases for beta-activate;
- 2. design a suitable loss function for beta-activated NN

The code for this test is here (in the notebook):

