Beta Regression vs. Logistic
Regression

References:

1. Peter Sadowski and Pierre Baldi, Neural Network Regression with Beta, Dirichlet, and Dirichlet-
Multinomial Outputs, /CLR, 2019

2. Silvia Ferrari and Francisco Cribari-NetoBeta Regression for Modelling Rates and Proportions,
Journal of Applied Statistics, 31:7, 799-815, DOI: 10.1080/0266476042000214501, 2004

Pre-requisites:

1. Knowing the Maximum-likelihood criterion;

2. Itis recommended that readers have known the concepts and basic applications of Beta distribution.

3. There will be a recap on how Maximume-likelihood criterion is applied to do regression (example from
image classifier). But readers are recommended to have known such a process. (Anyway, | am going
to try my best to explain that.)

Written by Tongyu Lu, March 15, 2021
Contents:

Beta Regression vs. Logistic Regression
Logistic Regression - Recap
Beta Regression - A Similar but Different Case
An Experiment for Beta Regression

Logistic Regression - Recap

Assume that we want to do image classification between cats and dogs.

Each input tensor (image) is denoted as x € [0,256]%*%*C and each output is denoted as y € {0, 1}.
There corresponding random variables (RVs) are denoted by X and Y.

Our classifier is denoted as a function g(-16) : [0, 256]B*WXC — [0, 1], which predicts the probability of
the image being a dog. Maybe this classifier is a CNN, but we do not really care about that right now; all
we need to know is that the classifier is controlled by parameter @, which is to be optimized. Normally, we
denote g(x10) as y.

What is the optimal parameter 8? Normally, we use the maximum-likelihood criterion to find that. How
comes?

We start from the distribution of Y: it is Bernoulli because it is a either-or choice. Assume that the
probability of “image x represents a dog” or “Y = 1 given x” is f(x). Then, we say that
P(Y =ylx) = P (1 — px)',y=0,1.

Now, we want to see if f(x) gives the right answer. Actually, y = f(x) = g(x16). To deal with this, we
calculate the log-likelihood term

1(0) = log(P(Y = ylx)) = ylog f(x) + (1 — y)log(1 — f(x)) = ylog g(xl6) + (1 — y) log(1 — g(x16)) -

When we observe a bunch of data {(x1,¥y1),(*2,¥2),...,(xn,Yn)}, we define the log-likelihood term as
L) = 22’:1 Vi log g(xx10) + (1 — yr) log(1 — g(xx10))- All we want is to maximize the likelihood by
adjusting parameter 6.

The causal line for our model is that: “@ controls when given x, f controls ¥ which gives the final result”.

Therefore, in the language of machine learning, we define the loss function as
loss(6) = —L(0) = — Y, yi log g(xel6) + (1 — yir) log(1 — g(xilf))- And we solve the
unconstrained argmin problem 8* = arg ming loss(8) by back-propagation.

And we say that this is a logistic regression, when y = g(x16) = ¢(f(x18)), where ¢(z) is sigmoid function

defined as ¢(z) = 1+{e—z . In this case, we could find that (after calculation) I() = (1 — y)f(xl0) — y,

which is a pretty simple form compared to the “log” form.

Beta Regression - A Similar but Different
Case

In the classification example, we assumed that the distribution of classifier output is Bernoulli. But actually,
our output situates between 0 and 1.

Can this model be used for regressing variables which situate between 0 and 1, but do not obey Bernoulli
distribution?

Of course we can, because the domain of our model output (between 0 and 1) is the same as the desired
one. However, it is obvious that Bernoulli distribution is not tailored for a continuous random variable. In
other words, there is something wrong with our loss function.

Recall that we define the loss function according maximum-likelihood criterion, which looks like:
loss(8) = —L(6) = — 22':1 log py (yx|f(xx)), where P serves as the parameter of the distribution of ¥
and is determined by the input x.

The key is on the function py: in the classification case, py is binomial (Bernoulli) and discrete, but it
could be other distributions.

Recall the Beta distribution: it is also suitable to model RVs which situate between 0 and 1! Here is a link
to my introduction to Beta distribution and its applications on modeling percentages and model
parameters: From_Beta_Distribution_to_Conjugate_Distributions.

Let us have a brief comparison between Bernoulli discrete RV and Beta continuous RV:

« (Bernoull) Y ~B(f) @ P¥ =y) = (1 -p'7,y=0,1,4€[0,1]

I'(a+p) — _
- (Beta) Y ~ Beta(a, f) & pr0la, f) = roazes " (1 =y¥L,y €[0,1],0,8> 0
Did you get it? Alternatively, we could model py as Beta distribution. And now our likelihood function

becomes

i@,) = log py(yla, f) = logl ol y*~1 (1 = YY1 = (@ — Dlogy + (B — 1) log(1 — y) + log roat’

Alternatively, we could replace @, # with parameter u,y, where @ = yy and g = (1 — u)y. Parameter
u € (0, 1) is the mean, which is suitable for model output.

https://lucainiaoge.github.io/2021/03/14/From_Beta_Distribution_to_Conjugate_Distributions/

The role of our Beta-neural-network might be estimating &, , and calculate the final output as
u = al(a + P). The loss function could be treated as

N
loss(6) = —L(0) = — X, log py (elaCxr), Blxi))-

The feed-forward process may look like this:

Notice that @, # > 0. Therefore, we could output them with a simple non-negative activate function.

An Experiment for Beta Regression

| want to approximate f : R® — [0, 1] which is defined as f(x) = 0.5 cos(IxI'® + 0.25%2) + 0.5, where

=LY &

And | defined three NNs to approximate it:

torch

torch.nn

torch.optim optim

torch.nn. functional
torch.utils.data.dataset Dataset
torch.utils.data Dataloader

numpy np
math
matplotlib.pyplot plt
%matplotlib inline

class BetaNN(nn.Module):
def __init__(self, mid=10)
super (BetaNN, self).__init__()
self.fcl = nn.Linear (6, mid)
self.fc2 nn.Linear (mid, mid)
self.fc3 nn.Linear (mid, mid)
self.fc_a = nn.Linear(mid, 1)
self.fc_b = nn.Linear(mid, 1)
forward(self, x)
= F.relu(self.fcl(x))
F.relu(self.fc2(x))
torch.cos(self.fc3(x))

F.softplus(self.fc_b(x)).squeeze(1)
(a/(a+b))

gamma = atb

X
X
X
a F.softplus(self.fc_a(x)).squeeze(1l)
b
y

y , gamma

class LinearNN(nn.Module):
def __init__(self, mid=10)

super (LinearNN, self).__init__()
self.fcl = nn.Linear (6, mid)
self.fc2 = nn.Linear(mid, mid)
self.fc3 nn.Linear (mid, mid)
self.fcy = nn.Linear(mid, 1)
forward(self, x)

x = F.relu(self.fcl(x))

x = F.relu(self.fc2(x))

x = torch.cos(self.fc3(x))

y F.relu(self.fcy(x)).squeeze(1l)

y

class SigmoidNN(nn.Module):

def __init__(self, mid=10)
super (SigmoidNN, self).__init__()
self.fcl = nn.Linear (6, mid)
self.fc2 nn.Linear (mid, mid)
self.fc3 = nn.Linear(mid, mid)
self.fcy = nn.Linear(mid, 1)
forward(self, x)
x = F.relu(self.fcl(x))
X F.relu(self.fc2(x))
X torch.cos(self.fc3(x))
y F.sigmoid(self.fcy(x)).squeeze(l)

y

The dataset is defined as:

class VectorGenerator:

def __dnit__(self, max_val = 10)
self.max_val = np.abs(max_val)

def gen_data(self)
x1 = np.random.rand(2)*self.max_valx2-self.max_val
X2 np.random.rand(2)*self.max_val*x2-self.max_val
x3 np.random.rand(2)*self.max_valx2-self.max_val
X = np.concatenate((x1l,x2,x3), axis=0).astype(np.float32)

X

class NonlLinearFuncDataset(Dataset):
def __init__(self, max_val = 10)

self.generator = VectorGenerator (max_val = 10)

__getitem__(self, index)
= self.generator.gen_data()

X
y = (np.cos(np.abs(np.mean(x))**x1.5 + 0.25%xnp.mean(x)*x2)+1)/2
X, Y

__len__(self)
1000000

Then, we design 4 experiments:

1. use L1 loss to train beta-activated nn
2. use L1 loss to train relu-activated nn

3. use BCE loss to train sigmoid-activated nn

4. use L1 loss to train sigmoid-activated nn

beta_nn = BetaNN(mid=10)
optimizer = optim.SGD(beta_nn.parameters(), lr=0.05)

linear_nn LinearNN(mid=10)
optimizer2 optim.SGD(linear_nn.parameters(), 1lr=0.05)

sigmoid_nn SigmoidNN(mid=10)
optimizer3 optim.SGD(sigmoid_nn.parameters(), lr=0.05)

sigmoid_nn_11 = SigmoidNN(mid=10)
optimizer4 = optim.SGD(sigmoid_nn.parameters(), 1r=0.05)

train_dataset = NonlLinearFuncDataset(max_val = 3)
train_loader = Dataloader(dataset = train_dataset, batch_size = 12)
train_iter = dter(train_loader)

1:
X, y_true = next(train_iter)

beta_nn.train()

y_hat, gamma = beta_nn(x)

loss = F.1l1_loss(y_hat, y_true)
loss.backward()

loss_buf += loss.detach()
optimizer.step()

optimizer.zero_grad()

linear_nn.train()

y_hat2 = linear_nn(x)

loss2 = F.l1_loss(y_hat2, y_true)
loss2.backward()

loss_buf2 += loss2.detach()
optimizer2.step()
optimizer2.zero_grad()

sigmoid_nn.train()

y_hat3 = sigmoid_nn(x)

loss3 = F.binary_cross_entropy(y_hat3, y_true)
loss3.backward()

loss_buf3 += F.1l1_loss(y_hat3, y_true).detach()
optimizer3.step()

optimizer3.zero_grad()

sigmoid_nn_11.train()

y_hat4 = sigmoid_nn_11(x)

loss4 = F.11_loss(y_hat4, y_true)
loss4.backward()

loss_buf4 += loss4.detach()
optimizer4.step()
optimizer4.zero_grad()

i+=1

i>=stop_iter:

After training, we get result like this:

beta activate, L1 loss, Ir=0.05

100 : - -
0.75
050

0.25

0.00

100 : - ~
0.75
0.50

0.25

0.00 1, -

0.75
0.50

0.25

0.00

-8 -6

100 . -
0.75

050

0.25

0.00

0
L1 loss curve

e e e e N T e i e i e e e e

04

0.3

0.2

0.1

o 2000 4000 G000 8000 10000

As we could see: the beta-activation is a feasible candidate in the bounded regression problem setting,
although it did not demonstrate salient superiority compared with relu-activation and sigmoid-activation.

However, when using negative-beta-likelihood as loss function, | observed failure:

def beta_loss(y_hat, gamma , y_true)
a = y_hatxgamma
b = gamma - a
tmpl = (a-1)*torch.lgamma(y_true)
tmp2 = (b-1)*torch.lgamma(y_true)
tmp3 = torch.lgamma(a+b)-torch.lgamma(a)-torch.lgamma(b)
torch.exp(-torch.sum(tmpl+tmp2+tmp3)*0.01)

1:
X, y_true = next(train_iter)

beta_nn_ml.train()

y_hatl, gammal = beta_nn_ml(x)

lossl = beta_loss(y_hatl, gammal , y_true)

lossl.backward()
loss_bufl += F.1l1_loss(y_hatl, y_true).detach()
optimizerl.step()

optimizerl.zero_grad()

i+=1

i>=stop_iter:

The result comes:

beta activate, L1 loss, Ir=0.05

10

05

0.0

10

05

0.0

10

05

0.0

10

05

0.0

10

05

0.0

0
L1 loss curve

03

02

01

0 2000 4000 6000 8000 10000

Therefore, future problems are to:

1. find typical user cases for beta-activate;
2. design a suitable loss function for beta-activated NN

The code for this test is here (in the notebook):

BoundedRegression.ipynb

blob:https://maxiang.io/4407beeb-c5d5-4f5f-9758-e255ce885ce4

