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Introduction: Toy Example 

Suppose we have a series of vectors � = ����, � = 1,2, … , �, where �� ∈ ℝ�. We want to cluster together similar vectors, 

what will we do? 

 

To make things easy, let us consider � = ���, ��, ��, ���, where ��, �� should be clustered together and ��, �� should be 

clustered together. If we want to find that �� and �� have affinity, we had better calculate the Gram matrix: 
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If ��, �� look similar, ����� should be big. 

If we assume that each vector �� in � are normalized, i.e. |��|� = 1, then the Gram matrix should look like: 

��� = �1 00 1 1 00 11 00 1 1 00 1� 

Another example, if ��, ��, �� should be clustered together, the Gram matrix should look like: 

��� = �1 11 1 1 01 01 10 0 1 00 1� 

Another example, if ��, ��, �� should be clustered together, the Gram matrix should look like: 

��� = �1 11 1 0 10 10 01 1 1 00 1� 

In fact, if we previously know that  ��, �� should be clustered together and ��, �� should be clustered together, we can find 

another series of vectors � = � �,  �,  �,  ��, s.t. ��� is near ���. 

How to find �? It is straightforward:  � =  � = �1,0�,  � =  � = �0,1� 
��� = �1 00 1 1 00 11 00 1 1 00 1� 

 

Therefore, if there are ! clusters, we can define each  � ∈ OneHot(!) 

Then, if one alleges that “��, ��, �� should be clustered together, you can assign  � =  � =  � = �1,0�,  � = �0,1� and then 

compare ��� with ��� to check if this allege is correct. 

Real Example: Deep Clustering for Music Source Separation [1,2] 

Now, let us change our point of view. 

Consider a problem: suppose we have a music audio *, or its STFT +�×-. This music audio is a trio of three instruments: 



piano (.), violin (�) and cello (/). Now, we want to train a model which could separate + into three instrumental parts +0, +1, +2. What can we do? 

 

First, send + into an embedding network to get embedding for each time-frequency bin. The embeddings are written as ��×-×� = Enocder(+�×-|7). Reshape � as �(�×-)×�. This matrix looks like the vector series � = ���, ��, ��, ��� in the 

previous section. 

Then, we have training data +0, +1, +2. We can convert them into binary masks 80, 81, 82 which log the time-frequency 

activation map of each instrument. Stack them together to get the mask tensor 8�×-×� = �80, 81, 82� . Reshape 8  as � = 8(�×-)×�. This matrix looks like the vector series � = � �,  �,  �,  �� in the previous section. 

Then you know what to do! 

 

If we allege that at (9:, ;:) (time 9: and frequency bin ;:) and (9�, ;�), there are frequency activations for piano, we should 

expect that �=>×?>� �=@×?@ = 1. 

This is the same that  =>×?>�  =@×?@ = 1 A 0 A 0 = 1 

To reach our expectations, we should make ��� as near as ���. Therefore, define loss function B = |��� C ���|-�  and 

minimize it, we will finish learning our encoder and get the best parameter 7∗. 

The whole procedure is depicted in the figure below: 

 

Once finishing learning parameter 7∗, we can do testing for instrumental separation! 

First, calculate � = Enocder(+|7∗); then, do clustering on the E × F vectors of � and get the corresponding masks. In 

this way, we can handle arbitrarily-many instrumental separations. 
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