
An Introduction to Deep Clustering

Summarized by Tongyu Lu

Dec 2020

Introduction: Toy Example

Suppose we have a series of vectors � = ����, � = 1,2, … , �, where �� ∈ ℝ�. We want to cluster together similar vectors,

what will we do?

To make things easy, let us consider � = ���, ��, ��, ���, where ��, �� should be clustered together and ��, �� should be

clustered together. If we want to find that �� and �� have affinity, we had better calculate the Gram matrix:

��� =
⎣⎢⎢
⎢⎡����� ���������� �����

����� ���������� ���������� ���������� �����
����� ���������� �����⎦⎥⎥

⎥⎤

If ��, �� look similar, ����� should be big.

If we assume that each vector �� in � are normalized, i.e. |��|� = 1, then the Gram matrix should look like:

��� = �1 00 1 1 00 11 00 1 1 00 1�

Another example, if ��, ��, �� should be clustered together, the Gram matrix should look like:

��� = �1 11 1 1 01 01 10 0 1 00 1�

Another example, if ��, ��, �� should be clustered together, the Gram matrix should look like:

��� = �1 11 1 0 10 10 01 1 1 00 1�

In fact, if we previously know that ��, �� should be clustered together and ��, �� should be clustered together, we can find

another series of vectors � = � �, �, �, ��, s.t. ��� is near ���.

How to find �? It is straightforward: � = � = �1,0�, � = � = �0,1�
��� = �1 00 1 1 00 11 00 1 1 00 1�

Therefore, if there are ! clusters, we can define each � ∈ OneHot(!)

Then, if one alleges that “��, ��, �� should be clustered together, you can assign � = � = � = �1,0�, � = �0,1� and then

compare ��� with ��� to check if this allege is correct.

Real Example: Deep Clustering for Music Source Separation [1,2]

Now, let us change our point of view.

Consider a problem: suppose we have a music audio *, or its STFT +�×-. This music audio is a trio of three instruments:

piano (.), violin (�) and cello (/). Now, we want to train a model which could separate + into three instrumental parts +0, +1, +2. What can we do?

First, send + into an embedding network to get embedding for each time-frequency bin. The embeddings are written as ��×-×� = Enocder(+�×-|7). Reshape � as �(�×-)×�. This matrix looks like the vector series � = ���, ��, ��, ��� in the

previous section.

Then, we have training data +0, +1, +2. We can convert them into binary masks 80, 81, 82 which log the time-frequency

activation map of each instrument. Stack them together to get the mask tensor 8�×-×� = �80, 81, 82� . Reshape 8 as � = 8(�×-)×�. This matrix looks like the vector series � = � �, �, �, �� in the previous section.

Then you know what to do!

If we allege that at (9:, ;:) (time 9: and frequency bin ;:) and (9�, ;�), there are frequency activations for piano, we should

expect that �=>×?>� �=@×?@ = 1.

This is the same that =>×?>� =@×?@ = 1 A 0 A 0 = 1

To reach our expectations, we should make ��� as near as ���. Therefore, define loss function B = |��� C ���|-� and

minimize it, we will finish learning our encoder and get the best parameter 7∗.

The whole procedure is depicted in the figure below:

Once finishing learning parameter 7∗, we can do testing for instrumental separation!

First, calculate � = Enocder(+|7∗); then, do clustering on the E × F vectors of � and get the corresponding masks. In

this way, we can handle arbitrarily-many instrumental separations.

References

[1] J. R. Hershey, Z. Chen, J. Le Roux and S. Watanabe, "Deep clustering: Discriminative embeddings for segmentation and

separation," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016, pp.

31-35, doi: 10.1109/ICASSP.2016.7471631.

[2] Keitaro Tanaka, Takayuki Nakatsuka, Ryo Nishikimi, Kazuyoshi Yoshii, Shigeo Morishima; Multi-instrument Music

Transcription Based on Deep Spherical Clustering of Spectrograms and Pitchgrams; 2020 ISMIR.

