An Introduction to Deep Clustering

Introduction: Toy Example

Suppose we have a series of vectors $V = [v_n], n = 1, 2, ..., N$, where $v_n \in \mathbb{R}^K$. We want to cluster together similar vectors, what will we do?

To make things easy, let us consider $V = [v_1, v_2, v_3, v_4]$, where v_1, v_3 should be clustered together and v_2, v_4 should be clustered together. If we want to find that v_1 and v_3 have affinity, we had better calculate the Gram matrix:

$$VV^{T} = \begin{bmatrix} v_{1}^{T}v_{1} & v_{1}^{T}v_{2} & v_{1}^{T}v_{3} & v_{1}^{T}v_{4} \\ v_{2}^{T}v_{1} & v_{2}^{T}v_{2} & v_{2}^{T}v_{3} & v_{2}^{T}v_{4} \\ v_{3}^{T}v_{1} & v_{3}^{T}v_{2} & v_{3}^{T}v_{3} & v_{3}^{T}v_{4} \\ v_{4}^{T}v_{1} & v_{4}^{T}v_{2} & v_{4}^{T}v_{3} & v_{4}^{T}v_{4} \end{bmatrix}$$

If v_1, v_3 look similar, $v_1^T v_3$ should be big.

If we assume that each vector v_n in V are normalized, i.e. $|v_n|^2 = 1$, then the Gram matrix should look like:

$$VV^{T} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Another example, if v_1, v_2, v_3 should be clustered together, the Gram matrix should look like:

$$VV^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Another example, if v_1, v_2, v_4 should be clustered together, the Gram matrix should look like:

$$VV^{T} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

In fact, if we previously know that v_1, v_3 should be clustered together and v_2, v_4 should be clustered together, we can find another series of vectors $Y = [y_1, y_2, y_3, y_4]$, s.t. YY^T is near VV^T .

How to find Y? It is straightforward:

$$y_1 = y_3 = [1,0], \qquad y_2 = y_4 = [0,1]$$
$$YY^T = \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Therefore, if there are C clusters, we can define each $y_n \in \text{OneHot}(C)$

Then, if one alleges that " v_1 , v_2 , v_3 should be clustered together, you can assign $y_1 = y_2 = y_3 = [1,0]$, $y_4 = [0,1]$ and then compare YY^T with VV^T to check if this allege is correct.

Real Example: Deep Clustering for Music Source Separation [1,2]

Now, let us change our point of view.

Consider a problem: suppose we have a music audio a, or its STFT $A_{T \times F}$. This music audio is a trio of three instruments:

piano (p), violin (v) and cello (c). Now, we want to train a model which could separate A into three instrumental parts A_p, A_v, A_c . What can we do?

First, send A into an embedding network to get embedding for each time-frequency bin. The embeddings are written as $V_{T \times F \times K} = \text{Enocder}(A_{T \times F}|\theta)$. Reshape V as $V_{(T \times F) \times K}$. This matrix looks like the vector series $V = [v_1, v_2, v_3, v_4]$ in the previous section.

Then, we have training data A_p, A_v, A_c . We can convert them into binary masks M_p, M_v, M_c which log the time-frequency activation map of each instrument. Stack them together to get the mask tensor $M_{T \times F \times 3} = [M_p, M_v, M_c]$. Reshape M as $Y = M_{(T \times F) \times 3}$. This matrix looks like the vector series $Y = [y_1, y_2, y_3, y_4]$ in the previous section.

Then you know what to do!

If we allege that at (t_0, f_0) (time t_0 and frequency bin f_0) and (t_1, f_1) , there are frequency activations for piano, we should expect that $v_{t_0 \times f_0}^T v_{t_1 \times f_1} = 1$.

This is the same that $y_{t_0 \times f_0}^T y_{t_1 \times f_1} = 1 + 0 + 0 = 1$

To reach our expectations, we should make VV^T as near as YY^T . Therefore, define loss function $L = |VV^T - YY^T|_F^2$ and minimize it, we will finish learning our encoder and get the best parameter θ^* .

The whole procedure is depicted in the figure below:

Once finishing learning parameter θ^* , we can do testing for instrumental separation! First, calculate $V = \text{Enocder}(A|\theta^*)$; then, do clustering on the $T \times F$ vectors of V and get the corresponding masks. In this way, we can handle arbitrarily-many instrumental separations.

References

[1] J. R. Hershey, Z. Chen, J. Le Roux and S. Watanabe, "Deep clustering: Discriminative embeddings for segmentation and separation," *2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, Shanghai, 2016, pp. 31-35, doi: 10.1109/ICASSP.2016.7471631.

[2] Keitaro Tanaka, Takayuki Nakatsuka, Ryo Nishikimi, Kazuyoshi Yoshii, Shigeo Morishima; Multi-instrument Music Transcription Based on Deep Spherical Clustering of Spectrograms and Pitchgrams; *2020 ISMIR*.